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A destabilizing vertical temperature gradient and a rotating magnetic field have been
applied to a cylindrical column of liquid gallium. The convective flows which arise
as a function of these parameters are identified. For small magnetic field strengths,
a regime of stationary flow is observed. This regime is bounded by critical values
of the Rayleigh and magnetic Taylor numbers. As the rotating magnetic field is
increased, the critical Rayleigh number can increase by more than a factor of 10.
The rotating magnetic field itself induces an instability at a critical value of the
magnetic Taylor number independent of the Rayleigh number. The nature of the
bifurcations (whether subcritical or supercritical) and the convective flows occurring
at the critical Rayleigh numbers are dependent upon the magnetic Taylor number.
For small magnetic Taylor numbers, the experimental observations are consistent
with the occurrence of a single asymmetric meridional roll which is driven around
the cylinder by the rotating magnetic field.

1. Introduction
The quality of bulk semiconductor crystals depends on their compositional and

structural homogeneity. For crystals grown from the melt, homogeneity is greatly
influenced by the convective motions and heat transport occurring during the crystal
growth process. The quality of resulting crystals can be diminished when the flow
is oscillatory. Flow oscillations couple to the heat transport and cause fluctuations
in the growth rate, which in severe instances can lead to periodic solidification and
remelt at the interface. The fluctuations often result in visible striations in the grown
crystals (Tiller 1991).

One means which crystal growers have employed to control undesirable temperature
fluctuations is the use of forced convection. As early as 1961, Chandrasekhar showed
that forced convection through fluid rotation can suppress natural convection and
increase the critical Rayleigh number (Rac) at which temperature fluctuations ensue.
In addition to suppressing natural convection, forced convection can also homogenize
the fluid, increase the thermal and solutal symmetry in the fluid, and provide a means
to control the solid–liquid interface shape. Examples of crystal growth techniques util-
izing forced convection are the Czochralski technique and the accelerated crucible ro-
tation technique. An alternative technique which is receiving increasing attention, and
the one which is the subject of this paper, is the use of rotating magnetic fields (RMFs).

A RMF interacts with an electrically conducting fluid via the Lorentz force and
provides a non-mechanical means of inducing forced convection in the fluid. This
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rotational stirring has been used to advantage in industrial applications such as the
continuous casting of steel for many years (Birat & Choné 1983; Spitzer, Dubke
& Schwerdtfeger 1986). More recently, RMFs have been used to control fluid and
heat transport during the growth of semiconductor crystals. Such usage has resulted,
in part, from the demonstrated ability of RMFs to homogenize multi-component
melts (Gelfgat & Gorbunov 1994) and to control the shape of the liquid–solid
interface (Sorkin & Mozgirs 1992). Salk et al. (1994) grew CdTe and CdTeSe crystals
using the travelling heater method under microgravity conditions. A RMF of 2 mT
and 400 Hz was applied during part of the growth. The CdTe crystals had a more
homogenous distribution of µτ products and resistivity, and the CdTeSe crystals had
fewer deep level defects, increased resistivity, and were better suited as high energy
radiation detectors when the field was turned on (Fiederle et al. 1996). Brückner
& Schwerdtfeger (1994) used a RMF instead of mechanical rotation to successfully
grow crystals of copper, germanium and silicon by the Czochralski method. Dold &
Benz (1997) greatly reduced the intensity of striations in Bridgman-grown germanium
crystals by applying a 2 mT field rotating at 50 Hz.

In order to take full advantage of the benefits that RMFs might have for crystal-
lization processes, it is essential to gain a better understanding of the fundamental
fluid mechanics occurring in the system. In particular, it is important to know what
the critical values are for the onset of oscillatory flows. Experimental and numerical
modelling studies in model fluid systems can help to provide this information. There
have been numerous previous studies which have considered flow resulting solely
from buoyancy-induced convection, and numerous studies of flow driven by a RMF
in isothermal enclosures, but only a few where both a RMF and buoyancy were
simultaneously present. In this paper, we present results from a carefully controlled
experimental study of the onset of time-dependent flow in a cylindrical container
of liquid gallium. The gallium is subjected to both a destabilizing vertical tempera-
ture gradient and a horizontal, azimuthally symmetric RMF. The non-dimensional
numbers which determine the flow states are the Rayleigh and magnetic Taylor (Tm)
numbers. The nature of the flow states is identified by analysing the temperature
response of thermistors immersed in the liquid gallium.

Studies of the buoyancy-driven flow of a fluid layer heated from below, also known
as Rayleigh–Bénard convection, can be categorized as linear stability analyses, ex-
perimental, or numerical investigations. Charlson & Sani (1971) conducted a linear
stability analysis and determined the critical Rayleigh number and the nature of the
lowest stable flow modes as a function of aspect ratio. Their analysis considered the
cases of both an ideally conducting and an ideally insulating cylinder wall. Buell &
Catton (1983a) used linear stability analysis to find Rac for a cylinder wall of arbi-
trary thermal conductivity. They determined that at the onset of convection the flow
was non-axisymmetric for aspect ratios A (height/diameter) greater than about 0.6
and axisymmetric for aspect ratios less than about 0.6. Experimental measurements
of oscillatory flows in mercury contained in a long vertical cylinder were made by
Verhoeven (1969). Although the predicted onset of non-axisymmetric steady flow was
not detected, oscillatory flow was observed at a Rayleigh number about 10% higher
than the theoretical value for steady flow. Kamotani et al. (1994) measured critical
Rayleigh numbers and oscillation frequencies for 1 < A < 3 and found that the
lowest stable flow mode was non-axisymmetric. They also detected a hysteresis in
the critical temperature difference at the transition to oscillatory flow. The critical
temperature difference required to eliminate oscillations (upon decreasing the tem-
perature difference) was about 1 K lower than that required to induce them (upon
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increasing the temperature difference). Müller, Neumann & Weber (1984) studied
Rayleigh–Bénard convection in gallium melts and water for 0.5 6 A 6 5. They iden-
tified critical Rayleigh numbers for the transition to steady, oscillatory, and turbulent
flow. In agreement with linear stability analysis and experiments (Müller et al. 1984),
numerical simulations determined that the least-stable flow mode was an axisymmetric
toroid for A = 0.5 and a non-axisymmetric single roll for A = 1 (Neumann 1990).

A RMF applied to an electrically conducting fluid contained in a vertical cylindrical
enclosure will result, in general, in a primary azimuthal swirling flow, which induces
a centripetal acceleration which is balanced by a radial pressure gradient (Davidson
& Hunt 1987). If the cylinder is truncated at one or both ends, the axial variation in
pressure will drive a secondary, meridional flow. The precise nature of the flow will
depend on a number of system parameters: the magnitude, frequency and number
of poles of the applied field; the electrical conductivity of the liquid and cylinder
boundaries; the cylinder aspect ratio; and the geometrical placement of the RMF with
respect to the cylinder. There have been numerous articles which have theoretically
calculated the dependence of flow on one or more of these parameters (see e.g.
Abricka, Krüminš & Gelfgat 1997; Witkowski & Marty 1998; Priede & Gelfgat 1998;
Spitzer, Reiter & Schwerdtfeger 1994). Using a scaling analysis, Davidson (1992)
developed a second-order differential equation which describes the flow distribution
in an axisymmetric cavity of arbitrary profile. The analysis is valid in the low-
frequency approximation, where the skin depth is larger than the cylinder radius.
Also in the low-frequency approximation, numerical analyses have calculated the
evolution of flow as a function of field strength (Priede & Gelfgat 1998; Marty et al.
1999). These numerical results indicate the existence of three flow regimes: a viscous
regime; a stable nonlinear inertial regime; and an unstable regime. A fourth flow
regime, occurring at a higher value of Tm and characterized by quasi-stationary stable
fluid motion, was identified by Gelfgat & Gorbunov (1994). However, this subject
is still under discussion (Marty et al. 1999). Experimental measurements on model
isothermal fluids have also been reported. The early measurements were made in
fluids which were always in the unstable or turbulent regime (Doronin, Dremov &
Kapusta 1973; Robinson & Larsson 1973; Gelfgat, Gorbunov & Kolevzon 1993).
This is perhaps not surprising as flow instabilities can occur at magnetic fields as low
as 0.5 mT in typical experiment conditions (Kaiser & Benz 1998). More recently, Barz
et al. (1997) measured the spatial dependence of both the azimuthal and meridional
flows and compared their results to theoretical predictions.

At very low values of Tm, the flow induced by a RMF is laminar. As Tm increases,
the flow velocity increases, and at a critical value of Tm the flow becomes unstable.
Richardson (1974) used a stability analysis to calculate this instability for an infinite
cylinder and found that at the onset of instability the secondary motions have a
multi-cellular structure. The presence of a top and bottom solid layer tends to have a
stabilizing influence on the flow as Tm increases with decreasing aspect ratio (Marty
et al. 1999; Barz et al. 1997). For example, in the infinite case, Tc

m = 2917, and
for A = 1, Tc

m = O(105). A difference in the two cases is that whereas Richardson
calculated the transition from purely azimuthal flow to two-dimensional steady flow,
the numerical calculations for finite height measure the transition to unsteady flow.
Numerical simulations have also found that at the critical value instability manifests
itself in the form of Taylor vortices which are generated in the middle of the cylinder
and swept to the ends by the secondary meridional flow (Kaiser & Benz 1998).
However, these authors also found that for small aspect ratios, such as A = 1, the
vortices do not develop fully.
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Experimental cylindrical test cells containing liquid gallium have been used to
observe flow behaviour under the combined influence of thermal buoyancy and a
RMF. A primary result of these studies is that a RMF can dampen time-dependent
fluctuations caused by buoyancy-driven convection (see e.g. Dold & Benz 1997;
Fischer et al. 1999a). Fischer et al. (1999b) defined an interaction parameter N as
the ratio of the magnetic Taylor number and the Grashof number. They found that
for N < 0.03 large-scale temperature fluctuations occur, while for N > 0.03 the
fluctuation amplitudes are greatly reduced. Dold & Benz (1999) also examined the
transition from flow dominated by a RMF to flow dominated by buoyancy convection.
Over the range of Rayleigh numbers investigated, 4.7 × 105 6 Ra 6 1.1 × 106, they
found that the Rayleigh number at which the transition occurs is proportional to
the square of the magnetic Taylor number. The nature of the flow has been inferred
experimentally by recording the signal from thermal sensors immersed in the liquid
gallium (Volz & Mazuruk 1996; Fischer et al. 1999b). When Ra > Rac, buoyancy flow
is driven around the cylinder in the azimuthal direction and the response of thermal
sensors to such a flow has been described by Fischer et al. (1999b) as thermal waves.
Theoretically, it has been shown that as the driving force of a RMF increases, Rac

increases (Volz & Mazuruk 1999). Therefore, if Tm < Tc
m, a thermally unstable flow

can be stabilized by applying a RMF of sufficient magnitude.
Studies which have considered the combined effect of both a RMF and buoyancy

on fluid behaviour have focused primarily on the effect of a RMF on fluids which are
above either Rac or Tc

m. They have concentrated on how the amplitude and frequency
of oscillations depend on Ra and Tm. However, as the experimental results presented
in this paper demonstrate, there is a region in Tm–Ra parameter space where no
time-dependent temperature oscillations are observed. This region is bounded by Rac

and Tc
m. The important question of how a RMF affects Rac has not been sufficiently

addressed. In only one previous work were the limits of stability in Tm–Ra parameter
space experimentally identified (Volz & Mazuruk 1996). However, in that work the
temperature gradient applied to the cylinder was continuously changed, resulting in
a hysteresis at the bifurcation points. Here we present quantitative measurements of
flow states obtained with constant external boundary conditions. The measurements
cover the range in Tm–Ra phase space up to and including where time-dependent flow
occurs. They also include the endpoint limits of the parameter space, where either
Ra or Tm = 0. Measurements made at these limits, in the classical Rayleigh–Bénard
convection or RMF-dominated forced convection regimes, are compared to previous
results in the literature.

2. Experiment apparatus and procedures
2.1. Experiment apparatus

The experiments were conducted in a cylindrical vertical enclosure with liquid gal-
lium as the working fluid. The top and bottom of the cell were made from thin
(1.5 mm) copper disks and the walls of the cell were constructed of 4 mm thick methyl
methacrylate polymer (PMMA). The distance between the top and bottom disks is
24 mm. The inner diameter of the cell is also 24 mm so that the cell has an aspect
ratio (height/diameter) of 1. The thermal conductivity of liquid gallium is more than
100 times higher than the PMMA container and hence the sidewalls provide a very
good approximation to rigid adiabatic boundary conditions. The temperatures at the
top and bottom of the cell are controlled by fluid (ethylene glycol) recirculating from
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Figure 1. Schematic diagram of the experiment apparatus. The liquid gallium is contained between
the thin copper disks. Temperatures at the top and bottom of the enclosure are measured with
thermocouples embedded in the copper disks and the gallium temperatures are measured with
8 thermistors inserted into the liquid.

Neslab RTE-211 refrigerated bath/circulators. The cell was isolated from possible
vibrations from the fluid pumps by having the fluid flow through passive pressurized
containers placed between the pumps and the test cell. Thermal interactions with
the ambient environment were minimized by packing quartz wool around the liquid
gallium cell and the fluid chambers at the top and bottom of the cell. The thermal
conductivity of the copper disks is 401 W mK−1 (Lide 1999) which is approximately
10 times higher than that of liquid gallium over the range of temperatures at which
the experiments were conducted. Thus, the copper disks efficiently conduct heat from
the recirculating fluid chambers and provide a uniform temperature surface to the
liquid gallium. The liquid gallium was placed in the cell through a thin copper fill-tube
with an opening such that more than 97% of the upper gallium surface remained
covered by the top copper disc. Gallium was left in the fill-tube to a height of several
cm above the liquid cell to ensure that the top surface of gallium in the cell remained
in contact with the copper disc. A schematic diagram of the test cell is shown in
figure 1.

The fluid dynamics in the cell were inferred from the temperature response of
eight thermistors (Thermometrics model P25) inserted into the gallium. Four of the
thermistors, labelled L1 to L4, were positioned at one third the distance from the
bottom to the top of the cell, z = h/3. The other four thermistors, labelled U1 to
U4, were positioned at z = 2h/3 with the same azimuthal positions as the lower four
thermistors, ϕ = 0, π/2, π and 3π/2. The thermistors protruded 2 mm into the liquid
and were 0.6 mm in diameter. The thermistors were operated with a constant current
of 10 µA which generated negligible self-heating in the system. The top and bottom
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cell temperatures were measured by K-type (chromel-alumel) thermocouples placed in
the copper disks less than 0.5 mm from the gallium surfaces. The thermocouples and
thermistors were calibrated by measuring the voltages under isothermal conditions at
several temperatures spanning the temperature range of interest. The voltage signals
were digitized using a 16-bit analog to digital converter and stored on disk to be
processed by a personal computer. The peak-to-peak noise fluctuations from the
thermistors immersed in gallium were less than 0.005 K.

The cell was placed inside the stator of a two-pole, three-phase electric motor with
an inner diameter of 10 cm. The stator generates a magnetic field which rotates in
the azimuthal direction with a frequency of 60 Hz. The voltage applied to each of
the three phases could be independently controlled to ensure that the magnetic field
was azimuthally uniform. The spatial distribution of the magnetic field without the
gallium cell present was measured with a Hall probe. The maximum variations in field
strength over the dimensions of the gallium cell were less than 4% and the applied
magnetic field can be described by

B = B cos (ϕ− ωt)er + B sin (ϕ− ωt)eϕ, (2.1)

where B and ω are the magnitude and frequency of the applied magnetic field. When
the gallium cell is present, the penetration of the field into the gallium is determined
by the skin depth, δ =

√
2/σωµ, where σ is the electrical conductivity and µ is the

magnetic permeability. In the present set-up, the skin depth is greater than the cell
radius with δ/r0 = 2.8. The magnetic field strength in the centre of the cell is reduced
with respect to that at the wall although this reduction is expected to be less than
0.1% (Volz & Mazuruk 1999). The induced electric current and Lorentz force depend
on the electrical boundary conditions of the cell. Specifically, the degree of electrical
connection between the gallium and copper can influence the resultant force, although
this effect will be less at lower frequencies. A thin oxide layer forms at the copper–
gallium boundaries and the contact resistant across such a layer was measured. For
the voltage levels induced by the RMF, this layer is electrically insulating and the
induced electric current is thus confined to the gallium.

2.2. Experiment procedures

The convective flow states were measured as a function of the Rayleigh and magnetic
Taylor numbers. The Rayleigh number is defined as

Ra =
gα(Tb − Ta)h3

κν
, (2.2)

where g is the acceleration due to gravity, 9.8 m s−2, α is the volumetric thermal
expansion coefficient, Tb − Ta is the difference in temperature between the bottom
and top of the cell, h is the cell height, κ is the thermal diffusivity and ν is the
kinematic viscosity. The magnetic Taylor number is defined as

Tm = Ha2Reω, (2.3)

where Ha is the Hartmann number, Reω is the rotational Reynolds number,

Ha = r0B

√
σ

2ρν
, Reω =

ωr2
0

ν
, (2.4)

and ρ is the density. The factor
√

1/2 in the Hartmann number originates from the
time-averaged RMF. These non-dimensional numbers depend upon the thermophysi-
cal properties of liquid gallium which are, in general, temperature-dependent. The
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Symbol Property Value (323 K) Units References

α thermal expansion 1.02× 10−4 K−1 Lide (1999)
ρ density 6.067× 103 kg m−3 Lide (1999)
κ thermal conductivity 26.8 W mK−1 Brandes & Brook (1992)

cp heat capacity 395.4 J kg−1K−1 Iida & Guthrie (1988)
κ = k/cpρ thermal diffusivity 1.12× 10−5 m2 s−1 Lide (1999),

Brandes & Brook (1992),
Iida & Guthrie (1988)

ν = η/ρ kinematic viscosity 3.19× 10−7 m2 s−1 Brandes & Brook (1992),
Lide (1999)

σ electrical conductivity 3.82× 106 S m−1 Iida & Guthrie (1988)

Table 1. Properties of liquid gallium at 323 K.

thermophysical property values used in this work and the sources from which they
were obtained are shown in table 1. The density (Lide 1999), viscosity (Brandes &
Brook 1992), and heat capacity and electrical conductivity (Iida & Guthrie 1988) were
calculated from formulas explicitly describing the temperature dependence of these
properties. The volumetric thermal expansion coefficient (Lide 1999) is assumed to
be temperature independent and the thermal conductivity is calculated from a linear
interpolation of values found in Brandes & Brook (1992). The thermal diffusivity and
kinematic viscosity are derived from the other properties. All of the results reported
in this work were obtained with a mean cell temperature of between 313 and 343 K.
The thermophysical properties were approximated to be constant over this range and
variations in the Rayleigh and Hartmann numbers result only from changes in the
applied temperature differential and applied magnetic field respectively.

Steady-state and dynamic measurements were made in the system. Steady-state
measurements are defined as those where the magnetic field and temperatures of the
top and bottom zones were set and then the system was allowed to equilibrate. The
system was allowed to stabilize for at least one hour before measurements were taken.
Changes in temperature to a new setting were slow enough that the temperature
profile in the cell remained linear. This quasi-static condition (Müller & Neumann
1983) is met as long as the time taken to change the temperature by 1 K is more
than h2/2κ. In the present experiments, h2/2κ = 25.7 s and this criterion is easily met.
The data points which make up the stability diagram were all obtained utilizing the
steady-state measurement method. Dynamic measurements were also made. In this
method the setpoint of the recirculating bath controlling the temperature at the top
of the cell (Ta) was kept fixed and the temperature at the bottom of the cell (Tb) was
slowly raised or lowered at a rate typically less than 1 K h−1. This method allowed
the transitions between flow states to be more clearly visualized.

3. Results
The essential results of this study are contained in the magnetic Taylor number–

Rayleigh number space diagram shown in figure 2. Five dynamically distinct regimes
of flow are identified. The different regimes are experimentally distinguished by the
temporal response of the thermistors. In general, the response of a given thermistor
was the same as the other 7, with the possible exception of a phase shift between
them. No spatially local modes were observed but rather the system oscillated with a
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Figure 2. Observed dynamical flow states in Tm–Ra parameter space. The regimes labelled Ω1, Ω2,
Ω3 and Ω4 are associated with flow states observed close to the steady region. The solid and dashed
lines are drawn as a guide to the eye.

global nature. It must be emphasized that the regions of the Tm–Ra phase diagram
labelled Ω1, Ω2, Ω3 and Ω4 are associated with flow patterns observed immediately
adjacent to the steady flow regime. The flow patterns can change as the distance from
the steady regime increases. For example, Ω1 is characterized by a single frequency.
As Ra increases, more frequencies appear and eventually turbulence ensues. As the
primary objective of this work is to identify the region in Tm–Ra space where the flow
is steady and perhaps most favourable for crystal growth, the rich and complex flow
dynamics occurring at larger values of Ra and Tm was not fully explored.

The symbols in figure 2 are the measured regimes of flow closest to the bifurcation
points. The solid circles are the largest values of Ra where the flow was steady. The
crosses are the lowest values of Ra where the flow was of type Ω1. The hysteresis
behaviour between the steady and Ω1 regimes will be described later in this section.
The open triangles, squares and diamonds bound the regimes where, respectively,
oscillations of type Ω2, Ω3 and Ω4 were observed. The dashed and solid lines are
drawn only as a guide to the eye.

The steady flow regime is defined as that regime where no time-dependent signals
from any of the thermistors were observed. Indeed, the regime of steady flow cannot
be experimentally distinguished from the condition of no flow. However, for Tm > 0,
there is flow in the system. No critical value for the onset of flow driven by a RMF
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is expected. Previous calculations (i.e. Davidson 1992; Priede & Gelfgat 1998) and
experiments (Barz et al. 1997; Ramachandran & Mazuruk 1998) have identified the
main characteristics for this flow. The primary motion is an azimuthal swirling flow.
The azimuthal flow is zero at r = 0, reaches a maximum at a value of r determined
by the skin depth and Ha, and is zero again at the sidewall. This azimuthal flow
causes a radial pressure gradient. For a cylinder of finite height, the radial pressure
gradient induces a secondary flow consisting of two axisymmetric meridional rolls.
At the midplane of the cylinder, fluid flows outward toward the cylinder wall. It then
moves upwards (downwards) towards the top (bottom) of the cell and back down
(up) the centre to the midplane.

Classical Rayleigh–Bénard convection occurs in the cell when Tm = 0. Experiments
with the magnetic field turned off were conducted in order to make comparisons
with previous theoretical predictions. Utilizing dynamic measurements (slowly and
continuously changing the temperature differential), the transition from the state of
no flow to that of flow can easily be identified (Volz & Mazuruk 1996). This is done
by plotting the difference in temperature signals of thermistors situated directly across
the cell from each other (for example, U3–U1 and U4–U2). When flow occurs, one or
more of the temperature differences becomes non-zero. For a cell with an aspect ratio
of 1, the flow which occurs above Rac is in the form of a single non-axisymmetric
meridional roll (a roll in the r, z plane) (Neumann 1990). The warmer fluid flows
up one side of the container and the colder fluid flows back down the other side.
This flow is degenerate with respect to ϕ, and small variations in the experimental
conditions determine which value of ϕ lies along the rotation axis of the roll. In the
present work, Rac was determined to be 3800. This is in agreement with the value
of 3800 obtained in a similar facility by the present authors in an earlier work (Volz
& Mazuruk 1996). It also agrees with the value of 3800 obtained from numerical
calculations (Neumann 1990), and the value of 3610 obtained from linear stability
analysis (Buell & Catton 1983b).

Figure 3 shows the dynamic transition between steady flow and Ω1 oscillations.
The differences in temperature seen by thermistors situated 180◦ across the cell from
each other are plotted versus time. The data were obtained with Tm = 510, which
corresponds to B = 0.145 mT. At Rac, a single non-axisymmetric roll develops in
the cell just as it did when Tm = 0. However, now there is an azimuthal force
which drives the thermal roll around the cylinder. The total flow is a combination
of buoyancy flow and RMF-induced flow. In figure 4 the temporal response of
thermistors to Ω1 flow oscillations are shown for a constant value of Ra > Rac. They
are consistent with the picture of a single non-axisymmetric roll rotating around the
cylinder. When L1 is a maximum, L3 is a minimum, and there is a 90◦ phase shift
between the nearest-neighbour thermistors. The upper thermistor signals follow the
same pattern, and the upper and lower thermistors are in phase with each other so
that, for example, U1 is a maximum when L1 is a maximum. These experimental
results are qualitatively consistent with recent calculations (Volz & Mazuruk 1999)
which showed that the lowest unstable flow mode is non-axisymmetric and that Rac

increases with increasing Tm.
A measure of how well the actual experimental conditions approach ideal conditions

can be obtained by observing the azimuthal rotation of the thermal roll at very low
magnetic field strengths. Deviations from ideal conditions can result, for example,
from a misalignment of the vertical axis of the cell with respect to the gravity vector
or from slight asymmetries in the thermal field at the top or bottom of the cell.
Figure 5 shows the transition from steady flow to Ω1 oscillations for B = 0.1 mT,
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Figure 3. Dynamic flow transition between the steady and Ω1 flow regime. U3–U1 and U4–U2 are
the difference in temperatures between thermistors situated directly across the test cell from each
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Figure 4. Temporal response of thermistors to Ω1 flow oscillations for Ra = 35 900
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which corresponds to Tm = 250. At this low magnetic field, it takes approximately
2 hours for the thermal roll described earlier to rotate around the cell a single time.
This corresponds to an azimuthal velocity of the roll on the order of 10µm s−1. Note
that this is the velocity of the thermal roll and not the azimuthal fluid velocity,
which is a function of r and is not directly measured. Above Rac, the meridional flow
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Figure 5. Temperatures of the L1, L2, L3 and L4 thermistors versus time at Tm = 250. The
temperature differences between the top and bottom of the cell are continuously increased with
time. Rac = 4200 is the critical value for the onset of buoyancy-driven meridional flow. At Ra = 7200,
buoyancy convection dominates and the thermal roll ceases to rotate around the cylinder.

velocity, driven by thermal buoyancy, is expected to be considerably larger. As can
be seen in the figure, the signals deviate from sinusoidal behaviour with increasing
Ra. Small deviations from conditions of pure azimuthal symmetry cause there to be
a preferred axis of alignment for the thermal roll. As Ra increases, the tendency of
the thermal roll to stick to a preferred alignment increases. Finally, at Ra = 7200
the driving force for buoyancy convection is strong enough to completely dominate
the force driving azimuthal flow and the thermal roll ceases to rotate around the
cell. The thermistor signals are then identical to those seen in the Rayleigh–Bénard
configuration when Tm = 0. The cessation of the azimuthal rotation of the thermal
roll, as a result of an increase in Ra, was not seen for B > 0.1 mT.

Immediately above the bifurcation from steady flow, the Ω1, Ω2 and Ω3 oscillations
are each characterized by a single frequency. These frequencies are independent of
Ra−Rac near the point of bifurcation, which is a characteristic of Hopf bifurcations
(Bergé, Pomeau & Vidal 1986). As Ra−Rac is further increased, second- and higher-
order critical values of Ra are reached, and multiple frequencies are observed. The
frequencies are a function of Tm and their dependence on Tm is shown in figure 6. The
frequencies vary by over 3 orders of magnitude. In addition to frequency, a second
distinguishing characteristic of the flow modes is the phase relationship between the
thermistor signals. These phase relationships are shown in figure 7. There is a 90◦
phase shift between nearest-neighbour thermistors in Ω1. The Ω2 frequency is more
than 4 times greater than Ω1, and there is a 180◦ phase shift between thermistors. The
transition from Ω2 to Ω3 involves another discontinuous jump in frequency, and a
90◦ phase shift is observed in Ω3. The thermistor signals in Ω4 are not singly periodic
and only the L1 signal is shown in figure 7(d).

The physical interpretation of the Ω1 oscillation has been described earlier in
this section as a buoyancy-driven non-axisymmetric thermal roll which is driven
around the cylinder by the RMF. As Tm increases, the force generated by the RMF
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Figure 6. Frequencies of flow oscillations versus Tm. The data were obtained just above the
transition from the steady regime. In the Ω1, Ω2 and Ω3 flow regimes the oscillations are singly
periodic nearest the steady regime. Multiple frequencies are observed in the Ω4 regime.

increases, and the thermal roll rotates more quickly around the cylinder. Although
the average azimuthal fluid velocity and the azimuthal velocity of the thermal roll
rotation are generally of the same order of magnitude, they are not identical. Recent
calculations have shown that the azimuthal velocity of the thermal roll depends
not only on the Hartmann number, but on the skin depth and Prandtl number as
well (Volz & Mazuruk 1999). Based on the present experimental data, a definitive
physical model of the flow corresponding to the Ω2, Ω3 and Ω4 oscillations is not
obvious. If axisymmetric modes do not couple as readily to the RMF as non-
axisymmetric modes, as is the case for an infinite cylinder (Volz & Mazuruk 1999),
then the most unstable time-independent flow state above a certain value of Tm is
axisymmetric. However, the axisymmetric mode cannot be experimentally detected.
The Ω2 oscillations may correspond to a secondary bifurcation to a time-dependent
mode above the axisymmetric one but numerical calculations utilizing the appropriate
experimental parameters are required to verify this possibility.

The RMF is clearly the dominant driving force for Ω4 oscillations. The onset of Ω4

oscillations is independent of Ra, and occurs at a critical value of Tc
m = 1.5×105. The

same value of Tc
m was also found in the experiment cell when a stabilizing temperature

gradient was applied. Recent calculations have predicted that above Tc
m, instabilities

are expected to occur in the form of Taylor vortices which are generated in the middle
of the cylinder and transported to the endwalls by the secondary, meridional flow
(Kaiser & Benz 1998). The generation of these vortices is expected to be statistical,
resulting in non-periodic temperature oscillations. However, the calculations also
found that for small aspect ratios, such as that used in the present experiment, the
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Reference Tc
m

Gelfgat & Gorbunov (1994), numerical 1.6× 105

Barz et al. (1997), numerical 2.8× 105

Kaiser & Benz (1998), numerical 5.4× 104

Priede & Gelfgat (1998), numerical 4.5× 105

Marty et al. (1999), numerical 1.8× 105

Mößner & Gerbeth (1999), numerical 2.0× 105

This work, experimental 1.5× 105

Table 2. Comparison of the critical magnetic Taylor number Tc
m obtained by different authors.
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Figure 7. Phase relationships between the L1, L2, L3 and L4 thermistor signals for the (a) Ω1

(Tm = 4.8 × 104, Ra = 35 900), (b) Ω2 (Tm = 4.8 × 104, Ra = 42 000) and (c) Ω3 (Tm = 1.4 × 105,
Ra = 42 800) flow regimes. Only the L1 thermistor signal is shown for the (d) Ω4 (Tm = 1.5 × 105,
Ra = 31 000) regime.

vortices do not fully develop. For a larger aspect ratio cylinder, a statistical generation
of vortices might result in a decreasing correlation of signal with increasing distance
from the cylinder midplane. Correlation functions for thermistor signals in the Ω4

regime are shown in figure 8. Neither the autocorrelation function of the L1 signal
nor the correlation functions of L1 with other thermistor signals show a significant
decay. This indicates that the signals are periodic and correlated, and a decrease in
correlation with time, which might be expected to occur in cylinders of larger aspect
ratio, is not observed.

A comparison of the current measurement of Tc
m with previous numerical calcula-

tions is given in table 2. There is about a factor of 8 difference between the highest
and lowest reported values. Direct simulation of Tc

m is a difficult task and there are
several possible reasons to account for the spread in the reported values. As Mößner
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Figure 8. Correlation functions for the thermistor signals in the Ω4 regime.
(a) L1L1, (b) L1U1, (c) L1L2, (d) L1L3.

& Gerbeth (1999) have noted, an accurate calculation requires a minimum number
of grid points. Also, near the instability threshold the instabilities develop slowly
and an insufficient calculation time may result in an unstable flow being classified as
stable. Results may also differ depending on the convergence criterion selected and
the direction of approach to the stability limit. For example, Marty et al. (1999) found
an 80% difference in Tc

m for A = 5 depending on whether Tm was decreased from an
unstable range until it was stable or whether Tm was increased from a stable range
until instability occurred. The physical model chosen can also have an effect. For
example, using the infinite cylinder model for the Lorentz force results in a significant
underestimate of Tc

m (Kaiser & Benz 1998; Mößner & Gerbeth 1999), although none
of the references cited in table 2 used such an approximation. Tc

m can also be affected
by the value of Reω . Although Tm = Ha2Reω, Reω appears independently in the
equation for the Lorentz force. Mößner & Gerbeth (1999) found that Tc

m depends
weakly on Reω , such that Tc

m varies by a factor of 1.6 when Reω is allowed to vary
over the typical experimental range 104 6 Reω 6 106.

A significant hysteresis exists between the steady flow regime and the Ω1 regime. The
bifurcation diagram for these two regimes is shown in figure 9 for Tm = 3× 104. The
solid lines connect the experimental data points and the arrows indicate the direction
of the transitions. The diagram is characteristic of a subcritical bifurcation. The
largest value of Ra for which the flow is steady is Rac = 32 900 and the smallest value
for which Ω1 oscillations exist is Rac′ = 23 600. Between Rac′ and Rac, the existence
of either steady flow or Ω1 oscillations depends on the history of the system. The Ω1

oscillations appear with a finite amplitude and with a frequency that is essentially
independent of Ra. However, the frequency did increase slightly with increasing Ra,
and a maximum increase of about 10% was observed over the range of data presented
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Figure 10. L1 thermistor temperature versus time at Tm = 5.0 × 104. The dynamic measurement
data indicate the transition to the Ω2 flow state at Ra = 3.8× 104 and the transition to the Ω1 flow
state at Ra = 5.2× 104.

in figure 9. As shown in figure 2, no hysteresis is observed between the steady and Ω1

flow regimes when Tm = 0. When the RMF is applied to the Rayleigh–Bénard cell
such a hysteresis does develop, and Rac − Rac′ increases as Tm increases. No other
hysteresis patterns were observed in transitions between the other flow regimes.

Figure 10 shows the evolution of a thermistor signal as ∆T is continuously increased
for a fixed value of Tm = 5.0×104. Because ∆T is continuously increasing, the fluid is
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Figure 11. Amplitude of flow oscillations versus Ra at Tm = 5.5× 104. The letters (a)–(e) label
flow states for which corresponding frequency spectra are shown in figure 12.

not in equilibrium, and the data qualitatively demonstrate the nature of the transitions.
At Ra = 3.8×104 the fluid makes the transition from steady flow to Ω2 oscillations. As
∆T is further increased, the fluid motion evolves from singly periodic to more complex
motions, and eventually becomes turbulent. At Ra = 5.2 × 104, the fluid makes the
transition to Ω1 oscillations where the amplitude of the signal increases substantially.
Buoyancy now dominates the flow and the signal is periodic with a harmonic at twice
the dominant frequency. In this illustration, ∆T is continuously increased, and so the
Ω2 regime occurs first, followed by the Ω1 regime. If ∆T were decreased instead, the
Ω1 oscillations would persist until the steady-state regime was reached.

The regimes identified in figure 2 define the flow nearest the steady regime. As the
distance in Tm–Ra phase space increases from the steady regime, the flow patterns
can change from those observed at the initial bifurcation point. As an example, we
consider the bifurcation diagram for Tm = 5.5× 104, shown in figure 11. These data,
unlike those shown in figure 10, were obtained with the steady-state measurement
method. Referring to figure 2, the value of Tm = 5.5× 104 corresponds to where the
dashed line demarcating the Ω1–steady transition intersects the solid line demarcating
the Ω2–steady transition. That is, the lowest value of Ra for which Ω1 oscillations exist
upon decreasing Ra is the same as that where Ω2 oscillations appear upon increasing
Ra. The Ω1 oscillations can clearly be distinguished from the Ω2 oscillations. Not
only are the frequency and relative phases of the signals different, as described above,
but the amplitude of Ω1 is approximately 10 times higher than the Ω2 signal. The
amplitudes of both oscillations increase for larger values of Ra. The letters (a)–(e)
in figure 11 correspond to the respective frequency spectra shown in figure 12. The
spectra all have the same scale with the exception of figure 12(e) which is shown
at a higher scale. In the steady regime, figure 12(a), no oscillations are observed.
Figure 12(b) is the spectrum corresponding to the Ω2 oscillations. The bifurcation
between the steady and Ω2 regimes is characteristic of a supercritical Hopf bifurcation.
The amplitude begins at zero and increases and the period is independent of Ra near
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Figure 12. Frequency spectra of the flow states identified in figure 11.
The data were obtained with Tm = 5.5× 104.

the bifurcation point. Between Ra = 4.86 × 104 and 5.25 × 104, another bifurcation
occurs. The amplitude does not change significantly but the signal is no longer singly
periodic. The dominant period doubles as the frequency is changed from 0.258 Hz to
0.125 Hz. Between Ra = 6.6× 104 and 7.2× 104 another flow regime exists which has
a higher amplitude than the Ω2 oscillations. This regime is non-periodic and a typical
frequency spectrum is shown in figure 12(d). The range of values over which the
transition to this regime occurred was between Ra = 6.6× 104 and 6.9× 104. Above
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Ra = 7.2 × 104, the flow makes a transition to Ω1 oscillations, a typical frequency
spectrum for which is shown in figure 12(e).

4. Conclusions
The onset of time-dependent convection in liquid gallium subjected to both a

destabilizing thermal gradient and a RMF has been experimentally investigated. At
small values of Ra and Tm, a regime of stationary flow has been identified which
is surrounded by several dynamically distinct regimes of time-dependent flow. The
time-dependent flow regimes are identified both by the magnitude and relative phases
of the frequency response of thermistors inserted into the melt. For small magnetic
fields, Rac increases with increasing Tm, and the transition at Rac is observed to
be a subcritical bifurcation. The hysteresis behaviour increases as Tm increases. An
estimate of the induced fluid velocity can be obtained by comparing the present
experiment with velocity measurements made by Barz et al. (1997) in a similar
system. They reported azimuthal fluid velocities of a few mm s−1 for Tm = 7.3× 104.
As Tc

m = 1.5 × 105, it is apparent that a RMF can induce motion in fluid which is
stationary with velocities on the order of mm s−1. This is three orders of magnitude
larger than typical semiconductor crystal growth velocities, which are on the order
of µm s−1. It thus appears that a RMF can be used to achieve the benefits of forced
convection without triggering deleterious instabilities. A supercritical bifurcation to
time-dependent flow does occur at Tc

m, and from a crystal growth standpoint it may
be advantageous not to exceed this critical value.

This work was supported by the Microgravity Research Division of the National
Aeronautics and Space Administration.
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